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To create subjective experience, our brain must translate physical
stimulus input by incorporating prior knowledge and expectations.
For example, we perceive color and not wavelength information, and
this in part depends on our past experience with colored objects
(Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investi-
gated the influence of object knowledge on the neural substrates
underlying subjective color vision. In a functional magnetic reson-
ance imaging experiment, human subjects viewed a color that lay
midway between red and green (ambiguous with respect to its dis-
tance from red and green) presented on either typical red (e.g.,
tomato), typical green (e.g., clover), or semantically meaningless (non-
sense) objects. Using decoding techniques, we could predict whether
subjects viewed the ambiguous color on typical red or typical green
objects based on the neural response of veridical red and green. This
shift of neural response for the ambiguous color did not occur for non-
sense objects. The modulation of neural responses was observed in
visual areas (V3, V4, VO1, lateral occipital complex) involved in color
and object processing, as well as frontal areas. This demonstrates
that object memory influences wavelength information relatively early
in the human visual system to produce subjective color vision.
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Introduction
As the brain processes incoming information, visual represen-
tations become detached from the low-level properties of
stimulus input: The visual world is instantly interpreted to
match our beliefs and expectations. Object knowledge, for
example, influences the colors we perceive (Hansen et al.
2006; Mitterer and de Ruiter 2008; Witzel et al. 2011): We
expect bananas to be yellow and carrots to be orange.

Behavioral studies have shown that when subjects have to
indicate whether they perceive a color that lies exactly between
orange and yellow as either orange or yellow, they more often
categorize the ambiguous color as yellow when presented on
typical yellow objects (e.g., a banana), and as orange when
presented on typical orange objects (e.g., a carrot; Mitterer and
de Ruiter 2008). Moreover, when participants have to adjust
the color of a fruit picture such that it appears achromatic, they
tend to overcompensate in the direction of the opponent hue
(Hansen et al. 2006; Witzel et al. 2011). When a similar color is
presented on a scrambled pattern, participants do not over-
compensate. This suggests that color categorization is not only
influenced by semantic knowledge, but that visual perception
itself is adjusted according to object-color associations.

Which neural substrates underlie the incorporation of prior
knowledge about objects to create subjective color perception,
however, remains unknown. Previous research has shown that

striate and extrastriate areas V1 and V2 are color selective;
however, cells in these areas are primarily color-opponent and
luminance-dependent (Zeki 1983; Brouwer and Heeger 2009;
Shapley and Hawken 2011). Area V4 and visual areas anterior
to V4 (VO1), on the other hand, have been shown to be in-
volved in color constancy (Zeki and Marini 1998; Heywood
and Kentridge 2003; but for critical reviews see Gegenfurtner
and Kiper 2003; Shapley and Hawken 2011) and are suggested
to respond according to perceptual color space rather than to
low-level color properties (Brouwer and Heeger 2009). Area
V3 is functionally grouped with area V4, as opposed to with
area V1 and V2. Possibly, mid and higher level areas beyond
V4 serve to combine color perception with memory for
objects, thereby influencing neural responses to color in lower
level areas and creating subjective color experience (Shapley
and Hawken 2011).

In this study, we investigated which neural substrates under-
lie the effect that object knowledge has on our subjective color
experience. Specifically, we examined whether early visual
areas (V1, V2, V3, V4) merely represent bottom-up color attri-
butes or whether they are influenced by prior knowledge.
Using functional magnetic resonance imaging (fMRI), we de-
termined whether the neural representation of a color that lies
midway between red and green (ambiguous with respect to its
distance from red and green) can be shifted toward red when
presented on typical red objects (typical-red: tomato, straw-
berry, rose, cherry) and toward green when presented on
typical green objects (typical-green: pine tree, clover, pear,
zucchini) (Fig. 1A, top). Subjects were presented with blocks
of ambiguously colored typical-red and blocks of ambiguously
colored typical-green objects. As a control, subjects viewed 2
sets of semantically meaningless (nonsense set A and nonsense
set B; Fig. 1A, middle) objects that were filled in with the same
ambiguous color. For each condition, the representation of the
ambiguous color was compared with veridical red and veridi-
cal green: runs containing blocks of red and blocks of green
geometrical shapes (Fig. 1A, bottom) were presented after the
ambiguously colored object runs. Thus, although the same am-
biguous color was presented in 4 different object conditions, a
shift toward red or green was only expected in the typical-red
and typical-green object conditions.

Because mean activity change per condition (as used in
classic univariate analyses) can be insensitive to differences
between the processing of colors (Brouwer and Heeger 2009;
Parkes et al. 2009; Seymour et al. 2009), we used multivoxel
pattern analysis (MVPA) to characterize the neural responses
underlying red, green, and the ambiguous color. We applied a
support vector machine (SVM) algorithm in 4 functionally
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defined visual regions of interest (ROIs; V1–V4) to determine
whether we could predict which typical object set subjects
were viewing based on the multivoxel pattern for veridical red
and green. We hypothesized that if early visual areas represent
physical wavelength information and are not influenced by
object knowledge, the activity patterns underlying the ambigu-
ous color should not be classifiable as either red or green
(neither when presented on the typical objects nor on the am-
biguously color nonsense objects). On the other hand, if color
representations in early visual areas are influenced by object
knowledge, activity should be affected by object-color associa-
tions, resulting in a shift in the representation of the ambigu-
ous color toward red or green for the typical objects, but not
for the nonsense objects. In addition to investigating these
functionally defined ROIs, we employed the same decoding
technique in a whole-brain searchlight analysis (Kriegeskorte
et al. 2006) to investigate whether areas other than early visual
cortex were engaged in a shift in color representation.

Materials and Methods

fMRI Acquisition
Ten subjects (1 male, mean age = 23.5, SD = 4.5) participated in this ex-
periment voluntarily or for monetary reward. All subjects had normal
or corrected-to-normal vision and were tested on color vision using the
Ishihara color blindness test. The study was approved by the local

Ethics Committee of the University of Amsterdam and subjects
were screened on risk factors precluding participation from MRI
experiments.

Scanning was performed on a 3T Philips TX Achieva MRI scanner at
the Spinoza Center in Amsterdam. A high-resolution T1-weighted ana-
tomical image (TR 8.17 ms; TE 3.74 ms; FOV 240 × 220 × 188) was re-
corded for each subject. Functional MRI was recorded using a sagittally
oriented gradient-echo, echo-planar pulse sequence (TR 2000 ms; TE
27.63 ms; FA 76°; 37 slices with interleaved acquisition; voxel size 2.5
× 2.5 × 3 mm; 80 × 80 matrix; FOV 200 × 200 × 122). Stimuli were back-
projected on a 61 × 36 cm LCD screen using Presentation software
(Neurobehavioral Systems, Inc., Albany, CA, USA) and viewed through
a mirror attached to the head coil.

Stimuli
To determine the red and green neural responses for each subject, 16
geometrical shapes (4 squares, 4 triangles, 4 circles, 4 hexagons; mean
object size = 1.3° × 1.3°, SD = 0.1° × 0.1°; Fig. 1A, bottom) were simul-
taneously presented surrounding a white fixation cross (as in Fig. 1B).
To optimize the level of activity in lower visual areas, the objects
rotated around the white fixation cross during a 12-s presentation
(Seymour et al. 2009). The objects were placed on 3 circles (radius:
2.9°, 4.7°, and 6.9°; movement speed: 1.5°/s, −2.5°/s, 3.6°/s) contain-
ing 4, 6, and 6 objects. At the start of each trial, the position of each
object was randomly determined, with the constraint that one of each
of the 4 different objects was placed on the inner circle (see Fig. 1).
Red and green were adjusted to be isoluminant (red: CIE L* = 55,
a* = 60, b* = 54; green: CIE L* = 55, a* =−40, b* = 38; both 65 cd/m2)
with respect to the gray background (CIE L* = 55, a* = 0, b* = 0; 65 cd/m2)
based on their CIE L*a*b color values. The ambiguous color was
chosen to lie exactly in between red and green (CIE L* = 55, a* = 10,
b* = 46; 65 cd/m2). Although some might label this color yellow,
orange, or brown, we refer to it as ambiguous, since it is ambiguous
with respect to the labels red and green. To map the responses for the
ambiguous color in a specific object-color association, 16 typically
green objects (typical-green: 4 pine trees, 4 clovers, 4 pears, 4 zucchini;
M obj. size = 1.3° × 1.3°, SD = 0.2° × 0.1°) and 16 typically red objects
(typical-red: 4 tomatoes, 4 strawberries, 4 roses, 4 cherries; M obj. size
= 1.2° × 1.4°, SD = 0.2° × 0.2°) were filled in with the ambiguous color
(Fig. 1A, top). These objects were line drawings taken from various
sources on the internet, which we modified such that the typical-green
and typical-red object sets had the same amount of colored and
black pixels. As a control, 16 nonsense objects (4 different figures com-
puted in Matlab using sine/cosine transforms; M obj. size = 1.4° × 1.4°,
SD = 0.2° × 0.2°) were filled in with the ambiguous color and presented
in 2 conditions, with the figures in the one condition (set A) rotated
90° compared with the other condition (set B) (Fig. 1A, middle).

We specifically chose to use line drawings instead of grayscale
photographs. Although the memory color effect might be larger with
grayscale photographs (Witzel et al. 2011), we wanted to minimize dif-
ferences in local contrast or other image statistics between objects. Al-
though the overall luminance can be adjusted to be equal in grayscale
photographs, the differences in edges and local luminance cannot be
controlled (think for example of a tree with many edges because of its
leaves and a tomato that has only outer edges). This might especially
influence the areas that are involved in processing local contrasts such
as V1. To minimize these differences between stimuli, we used line
drawings containing only ambiguously colored and black pixels.

fMRI Procedure and Task
Subjects performed 12–16 runs depending on whether they performed
one or two scanning sessions. Four subjects underwent 1 scanning
session in which 4 typical object runs, 4 nonsense object runs and 4
color runs were recorded. Two subjects started with the typical object
runs and 2 subjects started with the nonsense object runs. All subjects
ended with the 4 color runs to make sure that there was no effect of
seeing veridical red or veridical green on the perception of the ambigu-
ous color. For example, subjects might (un)consciously introduce a
bias when mapping the ambiguous color to either red or green, if they
had already seen veridical red and green prior to the ambiguous color.
Such an association might have overtaken any real object-color

Figure 1. Stimuli and task design. (A) Stimuli used for the typical object runs,
nonsense object (nonobjects) runs and color runs. Note that colors will appear
differently on different screens and on printouts. (B) Example of the positioning of the
16 objects around the fixation cross. The same rules applied to the typical and
nonsense objects. Objects rotated around the fixation cross on the path of 3 circles
(white lines, not visible in experiments: radius of 2.9°, 4.7°, and 6.9°, containing 4, 6,
and 6 objects). The positioning of the objects was determined randomly at the start of
each block, with the constraint that each object was placed once in the inner circle.
Note that relative sizes are adjusted for display purposes.
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associations, thus potentially creating a type II error. To prevent this,
we showed the color runs at the end of the experiment. Six subjects
underwent 2 scanning sessions of 8 runs. In the first session, 4 typical
object runs and 4 color runs were recorded and in the second session,
4 nonsense object runs and 4 color runs were recorded. In this session,
the color runs were recorded again in the second session to reduce
variance that could be caused by imperfect registration or different
blood oxygen level–dependent (BOLD) dynamics between sessions.

In each fMRI run, 2 conditions (color run: red and green; or typical
run: typical-red and typical-green; or nonsense run: nonsense objects
set A and set B) were presented for 10 blocks each (resulting in 20
blocks per run). One block lasted 16 s containing a 4-s rest period.
Each run started with a 16-s rest period and ended with a 20-s rest
period (total run time 356 s, 178 TR). Blocks were presented pseudo-
randomly per run, and block presentation was counterbalanced
between runs. During the whole run, subjects had to fixate on the fix-
ation cross and press a button when the cross turned into a circle (3
times per 12-s presentation period, timed randomly). We used eye-
tracking (Eyelink-1000, SR Research) to make sure that subjects prop-
erly fixated throughout each run.

Behavioral Task
On a different day after the scanning session(s), subjects performed
a behavioral task in which the subjective perception of the ambigu-
ously colored stimuli was investigated. Subjects rated 7 colors on a
red-to-green continuum as either red or green (see Fig. 4A, x-axis).
The 7 colors (ranging from CIE L* = 55, a* = 25, b* = 52 to CIE L* = 55,
a* =−10, b* = 40 in steps of a* = 5 and b* = 2) were presented on the
objects used in the fMRI runs (Fig. 1A). Each stimulus was presented
once a block and there were 5 blocks (4 objects × 4 conditions × 7 colors
× 5 blocks = 560 trials total). This gave a total of 20 observations per color
per condition (4 objects × 5 repetitions). A colored noise mask consisting
of pixels that were all randomly colored was presented in between each
presentation to prevent spillover effects of the previous trial.

Region-of-Interest Localization
We functionally defined 5 visual regions of interest (ROIs: V1, V2, V3,
V4, as well as all regions combined). Each subject completed 1–4 polar
mappings and 1–2 eccentricity mappings. We used standard techni-
ques to draw out early visual areas on the basis of these mappings
(see Supplementary Fig. 1 and Wandell and Winawer 2011). For polar
angle mapping, a checkerboard (red–green, flickering at 8 Hz) wedge
rotated around fixation (clockwise or counterclockwise; complete
revolution in 32 s; 8 repetitions) and, for eccentricity mapping, a
checkerboard ring (red–green, flickering at 8 Hz) expanded from
center to periphery (or vice versa; complete revolution in 32 s; 8 repeti-
tions). During runs, subjects fixated at the center while detecting blue
squares presented in the red–green checkerboard stimuli to keep their
attention with the stimuli and maximize the visual response.

Multivoxel Pattern Analyses
Data were analyzed using Brainvoyager QX 2.2 (Brain Innovation,
Maastricht, the Netherlands, Goebel et al. 2006) and Matlab 2010
(MathWorks, Inc., Natick, MA, USA). Functional scans were slice-time
corrected, motion corrected, spatially smoothed with a Gaussian of 2
mm FWHM and high-pass filtered at 0.01 Hz. All functional scans were
first aligned to the functional scan that was recorded closest in time to
the T1-weighted anatomical image, and co-registered to the anatomical
image that was transformed to Talairach space using an ACPC trans-
form (Talairach and Tournoux 1988). The transformations that were
necessary to co-register the EPI sequences to the subject-specific ana-
tomical image and subsequently to the normalized anatomical image
were concatenated, and were therefore handled as one single trans-
formation. Moreover, the transformation from subject space to Talair-
ach space is a piecewise linear transformation, and does not introduce
nonlinearity (Poldrack et al. 2011). We normalized all subject-specific
anatomical images to Talairach space to be able to compare our indi-
vidual ROI analyses with the group-level searchlight analysis. Import-
antly, because the anatomical and functional data of each subject
underwent the same subject-specific transformation into Talairach

space, the relative location of visual areas was maintained. All visual
ROIs were functionally defined using subject-specific retinotopy and
eccentricity mappings.

Data in the functional color and object runs were z-transformed. For
each stimulus block, the 4 volumes (8 s) that corresponded to the peak
of the BOLD-response were averaged [the peak of the BOLD-response
was calculated for each subject separately by cross-correlating the
z-transformed data of the training runs for the combined ROI (com)
with a Gaussian (α 2.5)]. This created a specific voxel pattern for each
subject and each stimulus presentation, separately for each ROI.

We used the Princeton MVPA toolbox (http://code.google.com/p/
princeton-mvpa-toolbox) in combination with a SVM from the Bio-
informatics toolbox to train the classifiers. To validate the MVPA
technique on our dataset, we first performed a within-category classifi-
cation in which we attempted to predict which color was presented
(red or green), which typical object set was presented (typical-red or
typical-green), and which nonsense object set was presented (set A vs.
set B) using a leave-1-out procedure. In these analyses, 3 runs were
used for training and the fourth run was used to test whether the pre-
sentations in this run could be correctly classified. All combinations of
runs were once used for training, using each run once for testing. Data
for these 4 iterations were averaged, yielding a classification score
(proportion correct) for each subject and each ROI.

We used a permutation test to establish whether the 3 classifications
(color, typical objects, and nonsense objects) significantly deviated
from chance. The permutation test consisted of iterating the following
2 steps: 1) For each subject, the training labels were randomly per-
muted, such that the relationship between the labels and the imaging
data were lost. This created a training set that relied on the same
subject-specific data, which were used to create a random classifier.
The same permutation was used for all subjects on any given iteration
(i.e., keeping the number of permuted labels equal across subjects).
This way, a random classifier was created for each subject. 2) For each
subject, the classification score for the test set was then calculated
using the random classifier from step 1. The classification outcomes of
all subjects were averaged, and compared with the subject-averaged
outcome based on the nonpermuted (veridical) classifier. Steps 1 and
2 were repeated 1000 times. A group-level P-value was calculated by
counting how many times the random subject-averaged outcome was
larger than the veridical subject-averaged outcome, and dividing this
number by 1000.

To test whether the ambiguous color shifted toward a red or green
color representation depending on object-color associations, the classi-
fier was trained on either the 4 color runs or on the 4 typical object
runs. The 4 runs belonging to the nontrained condition were tested as
such that a correct classification corresponded to the typical-red condi-
tion being classified as the color red or the color red being classified as
the typical-red condition (depending on whether training was per-
formed on the color runs or on the typical object runs). Data for the 2
iterations (color to typical objects and typical objects to color) were
averaged to obtain a more reliable estimate (i.e., smaller variance) of
the effect. Again, data were tested using a permutation test as described
above. To verify that the effect was due to typical object-color associa-
tions and not to other coincidental similarities between testing and
training runs (e.g., order of presentation), we used the same procedure
on the nonsense object condition. To obtain a classification score for
the nonsense objects, one set of stimuli was arbitrarily chosen to re-
present the association with red (set A) and the other set was chosen to
represent the association with green (set B).

To investigate whether other brain areas besides functionally
defined early visual cortex are involved in object-color associations, we
used a searchlight procedure to scan the entire brain using the same
MVPA technique (Kriegeskorte et al. 2006). In this procedure, MVPA is
performed on a spherical kernel with a radius of 4 voxels (257 voxels
were weighted equally) throughout the entire brain (excluding the
cerebellum and brainstem). To test each location in the brain, each
voxel once served as the center of a spherical kernel. Classification was
performed in each kernel separately, yielding a mean classification
score (proportion correct) for each voxel in the brain for each subject.
Again, the classifier was trained on one condition (color or typical/non-
sense objects) and tested on the other condition, and the outcomes of
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these 2 iterations were averaged. Because individual brain data were
normalized to Talairach space, we were able to test the mean classifica-
tion performance for each voxel across subjects. Mean classification
performance in each voxel was tested against chance (0.50) using two-
sided paired t-tests. First, single voxels were thresholded at a P-value
of 0.01 (corresponding to a t-value of 3.25). Then, we determined
whether a cluster of adjacent voxels – consisting of voxels touching in
at least one corner in 3D space – exceeded our cluster threshold. To
apply a cluster threshold, we used a boxplot (Frigge et al. 1989) to
identify clusters that deviated in size from our sample based on the
interquartile range of all cluster sizes (see Fig. 3A). We labeled these
clusters significant, as their size exceeded the expected size based on
the distribution of our sample.

Results

ROI Decoding Results
To validate the MVPA technique with our particular dataset,
we first determined whether we were able to correctly predict
the presentation of color (red vs. green), typical objects
(typical-green vs. typical-red) and nonsense objects (set A vs.
set B) by themselves. Classification performance averaged over
subjects is shown in Figure 2A. Red and green could be pre-
dicted for all 4 ROIs and when combining these ROIs (com),
classification performance increased (all P < 0.001). The 2 sets
of real objects could be predicted from all visual areas as well
(all P < 0.05). The 2 types of nonsense objects could only be
classified in V4 (V4: P = 0.048, V1–V3 and com: P > 0.05). This
indicates that there was not enough difference in spatial infor-
mation to distinguish the 2 nonsense object sets (that were
identical except for a rotation of each object) in V1–V3, while
the difference in overall shape was processed by V4, albeit to a
weak extent. Color categorization was superior to object cat-
egorization, in line with the idea that these low-level areas re-
present features rather than complete objects (Brewer et al.
2005; Wandell and Winawer 2011).

To investigate whether the representation of the ambiguous
color shifted toward either red or green in the different object
sets, we performed 2 between-category classifications. In these
classifications, the classifier is trained on all the runs of one
category (e.g., color) and tested on all the runs of the other
category (e.g., objects). Data for the 2 iterations averaged
(color to typical objects and typical objects to color) are shown
in Figure 2B. Classification of the ambiguously colored typical
objects as their typical color was significantly above chance for
area V3 (P = 0.005), V4 (P < 0.001), and for the 4 ROIs com-
bined (P = 0.005). This suggests that, for the typical objects,
the representation of the ambiguous color in V3 and V4 shifted
toward either red or green, depending on the color associated
with the specific typical object set.

To verify that the effect was due to typical object-color asso-
ciations, we used the same procedure on the nonsense object
condition. To obtain a classification score for the nonsense
objects, one set of stimuli was arbitrarily chosen to represent
the association with red (set A) and the other set was chosen to
represent the association with green (set B). In contrast to the
typical objects, the classification between ambiguously colored
nonsense objects and color was at chance performance (all P >
0.05). As the ambiguous color was chosen to lie midway
between red and green in CIE L*a*b color space, it was equally
often classified as either red or green in both sets.

Together, these findings show that the representation
underlying the ambiguous color in itself did not resemble

either red or green, but object knowledge influenced its neural
representation in V3 and V4 such that it shifted toward the ex-
pected color. However, classification performance could also
be driven by univariate differences, that is, differences in mean
activity between ROIs. If, for example, the mean activity for
the typical-red objects was higher than the mean activity for
the typical-green objects, and at the same time the mean activ-
ity for the red geometrical shapes was higher than for the
green geometrical shapes, this might drive the between-
category classification results. To test this, we performed a

Figure 2. ROI analyses. (A) Within-category classification using a leave-1-run-out
procedure for red and green (color), typical-red and typical-green objects (typical
objects) and nonsense objects set A and B (nonsense objects) averaged over subjects.
Classification of color and typical objects was significantly above chance (dotted line)
for each ROI (V1–V4) and for all ROIs combined (com). Classification of nonsense
objects only significantly exceeded chance in V4. (B) Classification between color and
typical objects and between color and nonsense objects averaged over subjects and
over training sets (see text). The between-category classification for color and typical
objects was significantly above chance in V3, V4, and when all ROIs were combined
(com). The between-category classification for color and nonsense objects did not
deviate from chance. Error bars denote within-group standard errors. *P< 0.05,
**P< 0.01, ***P< 0.001.
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univariate analysis, in which we tested the difference in activa-
tion between red and green, and between typical-red and
typical-green for each ROI, using a general linear model. We
found that there were no significant differences between red
and green or the typical-red and typical-green object sets (Sup-
plementary Fig. 2). Also, within participants, there was no rela-
tion between the direction of difference between red and
green and the typical-red and typical-green objects (Supple-
mentary Table 1). This suggests that the between-category clas-
sification performance for veridical red and green with
ambiguously colored typical objects was not based on an inci-
dental overlapping difference in mean activity between red
and green, and the typical-red and typical-green object set.
Thus, the correct classification of ambiguously colored typical
objects as red or green depended on a shift in the specific
voxel pattern response for the ambiguous color toward the
voxel pattern response for red or green.

Searchlight Decoding Results
To investigate which regions besides our functionally mapped
lower visual regions were involved in the shift in color percep-
tion, we performed a searchlight analysis on both the typical
objects and nonsense objects. We found 3 clusters for which
the classification between colors and typical objects was sig-
nificantly above chance (Fig. 3B): one right-lateralized visual
dorsal cluster, one left-lateralized visual ventral cluster, and
one left-lateralized prefrontal cluster. The visual dorsal cluster
overlapped with area V2 and V3, and the visual ventral cluster
overlapped with V4, thereby confirming the findings on V3
and V4 of our ROI analyses. Possibly, the patch of voxels that
was involved in V2 was not large enough to yield a correct
classification when all voxels in V2 were taken into the ana-
lysis. In addition to significant classification in our predefined
ROIs, we found that the ventral cluster covering V4 also
covered voxels anterior to V4, probably encompassing VO1

Figure 3. Searchlight analyses. (A) Cluster correction method used for the between-category (color and typical objects, and color and nonsense objects together) searchlight
analyses. As the data were not normally distributed, we used a boxplot to identify clusters that deviated from the sample (using only clusters that had a voxelsize >5). The
advantage of using this method is that a boxplot is nonparametric, and thus does not make any assumptions about the underlying statistical distribution. The box indicates the
interquartile range (IQR; left side = 1st quartile, right side is 3rd quartile), and the whiskers show the lowest and highest datum still in the 1.5*IQR range. The thick line indicates the
mean of the data. Three clusters exceeded the cluster threshold (stars), and these 3 clusters belonged to the color and typical objects condition. (B) The 3 significant clusters for
the typical objects and color classification (circled in red, colors depict voxel t-values) were located in the right dorsal visual region, left ventral visual region, and left medial
prefrontal region. (C) No clusters for the color and nonsense objects condition exceeded the cluster threshold.

Cerebral Cortex 5

 at U
niversiteit van A

m
sterdam

 on N
ovem

ber 6, 2014
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu224/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu224/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu224/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhu224/-/DC1
http://cercor.oxfordjournals.org/


(Wandell and Winawer 2011), which is known to be involved
in perceptual color processing just as V4 (Brewer et al. 2005;
Bartels and Zeki 2008; Brouwer and Heeger 2009), and voxels
in the left lateral occipital cortex (LOC), which is involved in
object processing (Malach et al. 2002; Grill-Spector 2003). The
visual dorsal region also encompassed a region anterior to V3.
Post hoc, we tested whether this region might be V3A
(Wandell and Winawer 2011) by defining V3A using the retino-
topy and eccentricity mappings, but this was not the case (pro-
portion correctly classified: 0.50, P > 0.05, results not shown).
In addition to the involvement of visual areas, we found signifi-
cant classification in left-superior and middle-frontal areas in
the vicinity of the dorsolateral prefrontal cortex (DLPFC). No
clusters survived the threshold for the nonsense object sets,
confirming that these results are specific to the experimental
manipulation of object category (see Fig. 3C).

Behavioral Results
To determine whether the typical objects evoked a behavioral
change in perception that coincided with the neural findings,
after scanning subjects performed a task in which they had to
indicate whether they perceived a color (from a 7-scale con-
tinuum) presented on an object as either red or green.
Figure 4A shows the number of “red” responses for each of the
7 hues on the 4 object sets, together with a fit of the data based
on a binomial regression (logit transformed to obtain continu-
ous data). For these 10 subjects, there was a trend towards
giving more “red” responses for the typical-red objects than for
the typical-green objects when presented in hue 4, which was
the color that was used in the fMRI experiment (t(9) = 2.1, P =
0.067). The 2 nonsense object sets were labeled “red” more
often than both the typical-green and the typical-red objects.
This suggests that the perception of color on these objects
leans toward red, possibly because there is less contrast in the
nonsense objects than in the typical objects. We then investi-
gated whether the behavioral effect on the color that was pre-
sented in the fMRI experiment correlated with our neural
classification measure in one of the significant ROIs or clusters
from our MVPA. We found that classification scores for the left
visual ventral cluster (encompassing V4/VO1/LO) correlated
positively with the behavioral effect (Pearson’s R = 0.66, P =
0.037; Fig. 4B), supporting the hypothesis that these areas are
involved in subjective color perception by combining memory
for colors with incoming color information (Shapley and
Hawken 2011). No significant correlations were found for the
nonsense object set.

Discussion
In this study, we investigated which brain regions are influ-
enced by prior knowledge about objects, thereby shaping our
subjective color experience (Hansen et al. 2006; Mitterer and
de Ruiter 2008). Using MVPA, we were able to classify the re-
sponse to an ambiguous color – lying midway between red
and green – as red when presented on typical red objects,
while that same color was classified as green when presented
on typical green objects. In contrast, when the ambiguous
color was presented on 2 sets of nonsense objects that did not
have any color associations, the color could not be classified as
either red or green. When using functionally defined ROIs in
visual cortex, we found the areas to be involved in this trans-
formation were located in lower level visual areas V3 and V4.

This shows that subjective experience at least partly overrides
the representation of physical stimulus properties at a relatively
early stage of the visual processing hierarchy. When using a
whole-brain searchlight approach, we confirmed the contribu-
tion of early visual cortex to object-color representations, but
also found above chance classification performance in frontal
regions (in the vicinity of the DLPFC). This suggests that sub-
jective color experience might be mediated by object-color
knowledge through involvement of frontal areas as well.

The neural correlates found in this study coincide with pre-
vious work showing that responses to color in V4 and VO1
(and somewhat in V3) progress through perceptual color space
and not physical color space (Brouwer and Heeger 2009). In
V1 and V2 on the other hand, responses to color can be easily
decoded, but do not progress through color space in the same
manner as in V4. This suggests that V4 represents perceptual
color rather than physical color input, whereas responses in V1

Figure 4. Behavioral results. (A) Number of “red” responses for each hue in each
object set (total of 4 objects× 5 repetitions = 20 observations per stimulus
condition). Crosses indicate the response averaged over all subjects. Solid lines
represent the fit of the data using a binomial regression (logit transformed). Subjects
gave more “red” responses to typical red objects than to typical green objects. The
nonsense object sets (nonobjects set A and B) were labeled red more often than both
the typical object sets. Hue 4 is the ambiguous color that was used in the fMRI
experiment. Error bars denote within-group standard error for the unfitted data
(crosses). (B) Correlation between the behavioral effect and classification performance
for the left visual ventral cluster (V4/VO1/LO). The behavioral shift was calculated as
the difference in “red” responses for hue 4. Note, due to the binomial fit on the logit
transformed data, the number of observations is continuous.
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and V2 might be mainly driven by physical color input. In the
present study, we found that object information shifted the re-
presentation of a single color toward either red or green in V3
and V4, showing that the representations in these areas are not
only dominated by perceptual color, but are modulated by
object-color knowledge. In V1 and V2, on the other hand, ver-
idical red and green representations were decodable, but the
representation of the ambiguous color did not shift according
to object-color associations. Possibly, representations in V1
and V2 are dominated by physical color input, and are not in-
fluenced by object information. This might also explain why
combining all ROIs improved classification performance for
within-category classification (red vs. green), but did not
improve between-category classification (colors with objects);
in the latter case, the representations in V1 and V2 diverges
from that in V3 and V4 and combining the information repre-
sented in these areas does not lead to superior performance.

In addition to investigating functionally defined ROIs, we
performed a searchlight analysis and found that the voxel
pattern associated with the ambiguous color also shifted
toward red or green in left VO1 and left LOC. VO1 (or V4α/V8)
is an area that is known to be involved in color processing as
well and has been suggested to be involved in perceptual color
representations just as V4 is (Brewer et al. 2005; Bartels and
Zeki 2008; Brouwer and Heeger 2009). The LOC sits higher up
in the visual hierarchy and is known to be involved in object
processing (Malach et al. 2002; Grill-Spector 2003). LOC might
be involved in the shift in color perception because the percep-
tion of the typical objects is coupled to a specific color, thereby
automatically activating the associated object-color representa-
tion. Moreover, individual classification scores in this cluster
correlated with the behavioral color naming effect, supporting
the claim that these areas are involved in subjective color ex-
perience by combining incoming color information with exist-
ing object-color memories (Shapley and Hawken 2011).

In addition to visual cortex, our searchlight analysis revealed
significant between-category classification in prefrontal areas
including the DLPFC. There are different possible explanations
for this finding: one possibility is that visual information is pro-
cessed by prefrontal cortex in the same manner as it is in visual
areas, and any shift in perception will therefore be reflected in
these regions as well. However, this is unlikely, since this
would be a redundant operation and there is not much
evidence showing that frontal cortex is involved in primary
analysis of visual information (but see Bar et al. 2006). Alterna-
tively, prefrontal cortex has been shown to be involved in re-
trieval of associative long-term memory items (Hasegawa et al.
1998; Ranganath et al. 2004). It could be that when viewing a
certain stimulus, associated concepts are activated and there-
fore, when viewing an ambiguously colored object, the
memory for the typical color of that object is activated as well.
The process of perceiving colors differently depending on
their semantic context might be facilitated by predictive signal-
ing from these higher level brain areas toward lower level
brain regions (Rao and Ballard 1999).

As a control, we showed that nonsense objects could not be
classified using the neural representations for red and green.
However, the within-category classification for nonsense
objects was only marginally significant in V4, and not signifi-
cant in V1–V3. Because the within-category classification did
not produce a large effect, it only weakly substantiates the
absence of a type I error on the within-category classification

results for typical objects. Therefore, it also carries less weight
as a control for the between-category classification results for
the typical objects. As a result, the outcome of the between-
category control classification is less informative, and would
have given stronger evidence if the within-category classifica-
tion had been successful, or more significant, in all visual
areas. However, the fact that within-category and between-
category classifications worked for the typical object and color
conditions but not for the control condition, suggests that
neither within-category nor between-category classifications
for color or typical objects is explained by unforeseen con-
founds in the classification procedure that are unrelated to the
experimental manipulations (e.g., an unforeseen impact of
stimulus ordering, phasic changes in attention, or classifier
bias).

The behavioral effect that we found in this study was statis-
tically weak. Others investigating a similar shift in ambiguous
color perception have found stronger results (Mitterer and de
Ruiter 2008). A reason for this might be that red and green are
perceptually quite distinct, and thus even though physically,
an ambiguous color might lie exactly between red and green, it
is hard to define an ambiguous color that has the same percep-
tual distance from both red and green. This can be seen by the
fact that the curve for the amount of given red responses is
quite steep (Fig. 4A): there seems to be an abrupt shift in label-
ing a color as either red or green. However, we specifically
chose to contrast red and green, because these are neurally
more distinct than, for example, orange and yellow. We there-
fore predicted that if we find a shift in neural color representa-
tion, it would be most evident along the red–green continuum
where the inherent difference is large. In that sense, it might
not be surprising that we find neural effects that are accompan-
ied by somewhat weaker behavioral effects.

Another reason for the small behavioral effect might be that
line drawings produce a smaller memory color effect than for
example grayscale photographs (Witzel et al. 2011). In this
study, we specifically chose to use line drawings and not
photographs, because we wanted to minimize effects due to
local contrast differences. For grayscale photographs, overall
luminance can be equalized between stimuli, but local contrast
differences remain. This might specifically affect neural opera-
tions in lower level areas involved in processing contrast. Re-
cently, Bannert and Bartels (2013) conducted an experiment
similar to the current study in which they used grayscale
photographs. Indeed, they were able to decode photographs
using color representations in V1, but not in V4. This differ-
ence in results might be explained by the fact that local contrast
differences were processed and interpreted specifically in V1,
which resulted in color (or luminance) information that was
congruent with the actual colors. Another possibility is that in
our study, the representation of the ambiguous color could be
overruled and altered in V4, but not in V1, while with grayscale
photographs, only V1 is affected.

The present study shows that object-color associations influ-
ence color processing in visual areas representing colors and
objects, as well as in frontal areas associated with memory. The
fact that representations in early visual areas are modified by
object knowledge suggests that subjects not only categorize a
color according to semantic expectations, but actually “per-
ceive” a color differently depending on the object it is pre-
sented on. Moreover, this effect occurs instantly, as the same
ambiguous color can be represented as green or red within
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one experiment. Such a process might be supported by pre-
dictive signaling from higher level to lower level brain areas
(Rao and Ballard 1999). The current results reveal that the
brain shapes our subjective experience by rapidly incorporat-
ing world knowledge, and altering neural responses in the cor-
tical areas that are involved in the initial stages of visual
processing.

Supplementary Material
Supplementary Material can be found at http://www.cercor.oxford
journals.org/ online.
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